Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
2.
Article in English | MEDLINE | ID: mdl-37719233

ABSTRACT

Mosquito-borne viruses are leading causes of morbidity and mortality in many parts of the world. In recent years, modelling studies have shown that climate change strongly influences vector-borne disease transmission, particularly rising temperatures. As a result, the risk of epidemics has increased, posing a significant public health risk. This review aims to summarize all published laboratory experimental studies carried out over the years to determine the impact of temperature on the transmission of arboviruses by the mosquito vector. Given their high public health importance, we focus on dengue, chikungunya, and Zika viruses, which are transmitted by the mosquitoes Aedes aegypti and Aedes albopictus. Following PRISMA guidelines, 34 papers were included in this systematic review. Most studies found that increasing temperatures result in higher rates of infection, dissemination, and transmission of these viruses in mosquitoes, although several studies had differing findings. Overall, the studies reviewed here suggest that rising temperatures due to climate change would alter the vector competence of mosquitoes to increase epidemic risk, but that some critical research gaps remain.

3.
Med Vet Entomol ; 37(4): 826-833, 2023 12.
Article in English | MEDLINE | ID: mdl-37622600

ABSTRACT

Aedes koreicus Edwards, 1917 (Hulecoetomyia koreica) is a mosquito (Diptera: Culicidae) from Northeast Asia with a rapidly expanding presence outside its original native range. Over the years, the species has been discovered in several new countries, either spreading after first introduction or remaining localised to limited areas. Notably, recent studies have demonstrated the ability of the species to transmit zoonotic parasites and viruses both in the field and in laboratory settings. Combined with its invasive potential, the possible role of Ae. koreicus in pathogen transmission highlights the public health risks resulting from its invasion. In this study, we used a recently established population from Italy to investigate aspects of biology that influence reproductive success in Ae. koreicus: autogeny, mating behaviour, mating disruption by the sympatric invasive species Aedes albopictus Skuse, 1894, and the presence of the endosymbiont Wolbachia pipientis Hertig, 1936. Our laboratory population did not exhibit autogenic behaviour and required a bloodmeal to complete its ovarian cycle. When we exposed Ae. koreicus females to males of Ae. albopictus, we observed repeated attempts at insemination and an aggressive, disruptive mating behaviour initiated by male Ae. albopictus. Despite this, no sperm was identified in Ae. koreicus spermathecae. Wolbachia, an endosymbiotic bacterium capable of influencing mosquito reproductive behaviour, was not detected in this Ae. koreicus population and, therefore, had no effect on Ae. koreicus reproduction.


Subject(s)
Aedes , Female , Male , Animals , Reproduction , Insemination , Italy , Biology , Introduced Species , Mosquito Vectors
4.
5.
PLoS Pathog ; 19(4): e1011307, 2023 04.
Article in English | MEDLINE | ID: mdl-37043515

ABSTRACT

Aedes aegypti is the primary vector of the arboviruses dengue (DENV) and chikungunya (CHIKV). These viruses exhibit key differences in their vector interactions, the latter moving more quicky through the mosquito and triggering fewer standard antiviral pathways. As the global footprint of CHIKV continues to expand, we seek to better understand the mosquito's natural response to CHIKV-both to compare it to DENV:vector coevolutionary history and to identify potential targets in the mosquito for genetic modification. We used a modified full-sibling design to estimate the contribution of mosquito genetic variation to viral loads of both DENV and CHIKV. Heritabilities were significant, but higher for DENV (40%) than CHIKV (18%). Interestingly, there was no genetic correlation between DENV and CHIKV loads between siblings. These data suggest Ae. aegypti mosquitoes respond to the two viruses using distinct genetic mechanisms. We also examined genome-wide patterns of gene expression between High and Low CHIKV families representing the phenotypic extremes of viral load. Using RNAseq, we identified only two loci that consistently differentiated High and Low families: a long non-coding RNA that has been identified in mosquito screens post-infection and a distant member of a family of Salivary Gland Specific (SGS) genes. Interestingly, the latter gene is also associated with horizontal gene transfer between mosquitoes and the endosymbiotic bacterium Wolbachia. This work is the first to link the SGS gene to a mosquito phenotype. Understanding the molecular details of how this gene contributes to viral control in mosquitoes may, therefore, also shed light on its role in Wolbachia.


Subject(s)
Aedes , Chikungunya Fever , Chikungunya virus , Dengue , Animals , Chikungunya virus/physiology , Mosquito Vectors
6.
PLoS Negl Trop Dis ; 17(3): e0011222, 2023 03.
Article in English | MEDLINE | ID: mdl-36989319

ABSTRACT

Aedes aegypti is the principal mosquito vector of dengue, yellow fever, Zika and chikungunya viruses. The wMel strain of the endosymbiotic bacteria Wolbachia pipientis was introduced into the vector as a novel biocontrol strategy to stop transmission of these viruses. Mosquitoes with Wolbachia have been released in the field in Northern Queensland, Australia since 2011, at various locations and over several years, with populations remaining stably infected. Wolbachia infection is known to alter gene expression in its mosquito host, but whether (and how) this changes over the long-term in the context of field releases remains unknown. We sampled mosquitoes from Wolbachia-infected populations with three different release histories along a time gradient and performed RNA-seq to investigate gene expression changes in the insect host. We observed a significant impact on gene expression in Wolbachia-infected mosquitoes versus uninfected controls. Fewer genes had significantly upregulated expression in mosquitoes from the older releases (512 and 486 from the 2011 and 2013/14 release years, respectively) versus the more recent releases (1154 from the 2017 release year). Nonetheless, a fundamental signature of Wolbachia infection on host gene expression was observed across all releases, comprising upregulation of immunity (e.g. leucine-rich repeats, CLIPs) and metabolism (e.g. lipid metabolism, iron transport) genes. There was limited downregulation of gene expression in mosquitoes from the older releases (84 and 71 genes from the 2011 and 2013/14 release years, respectively), but significantly more in the most recent release (509 from the 2017 release year). Our findings indicate that at > 8 years post-introgression into field populations, Wolbachia continues to profoundly impact expression of host genes, such as those involved in insect immune response and metabolism. If Wolbachia-mediated virus blocking is underpinned by these differential gene expression changes, our results suggest it may remain stable long-term.


Subject(s)
Aedes , Dengue Virus , Wolbachia , Zika Virus Infection , Zika Virus , Animals , Dengue Virus/physiology , Wolbachia/genetics , Mosquito Vectors , Zika Virus/genetics , Australia , Gene Expression
7.
Clin Infect Dis ; 76(2): 335-337, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36184991

ABSTRACT

In Australia, Japanese encephalitis virus circulated in tropical north Queensland between 1995 and 2005. In 2022, a dramatic range expansion across the southern states has resulted in 30 confirmed human cases and 6 deaths. We discuss the outbreak drivers and estimate the potential size of the human population at risk.


Subject(s)
Encephalitis Virus, Japanese , Encephalitis, Japanese , Humans , Encephalitis, Japanese/epidemiology , Australia/epidemiology , Disease Outbreaks , Risk Factors
8.
Parasit Vectors ; 15(1): 342, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36167577

ABSTRACT

BACKGROUND: Optimal climatic conditions for dengue vector mosquito species may play a significant role in dengue transmission. We previously developed a species-specific Suitable Conditions Index (SCI) for Aedes aegypti and Aedes albopictus, respectively. These SCIs rank geographic locations based on their climatic suitability for each of these two dengue vector species and theoretically define parameters for transmission probability. The aim of the study presented here was to use these SCIs together with socio-environmental factors to predict dengue outbreaks in the real world. METHODS: A negative binomial regression model was used to assess the relationship between vector species-specific SCI and autochthonous dengue cases after accounting for potential confounders in Guangdong, China. The potential interactive effect between the SCI for Ae. albopictus and the SCI for Ae. aegypti on dengue transmission was assessed. RESULTS: The SCI for Ae. aegypti was found to be positively associated with autochthonous dengue transmission (incidence rate ratio: 1.06, 95% confidence interval: 1.03, 1.09). A significant interaction effect between the SCI of Ae. albopictus and the SCI of Ae. aegypti was found, with the SCI of Ae. albopictus significantly reducing the effect of the SCI of Ae. aegypti on autochthonous dengue cases. The difference in SCIs had a positive effect on autochthonous dengue cases. CONCLUSIONS: Our results suggest that dengue fever is more transmittable in regions with warmer weather conditions (high SCI for Ae. aegypti). The SCI of Ae. aegypti would be a useful index to predict dengue transmission in Guangdong, China, even in dengue epidemic regions with Ae. albopictus present. The results also support the benefit of the SCI for evaluating dengue outbreak risk in terms of vector sympatry and interactions in the absence of entomology data in future research.


Subject(s)
Aedes , Dengue Virus , Dengue , Animals , China/epidemiology , Dengue/epidemiology , Mosquito Vectors
9.
PLoS Negl Trop Dis ; 16(6): e0010478, 2022 06.
Article in English | MEDLINE | ID: mdl-35700164

ABSTRACT

BACKGROUND: Vector surveillance is an essential public health tool to aid in the prediction and prevention of mosquito borne diseases. This study compared spatial and temporal trends of vector surveillance indices for Aedes vectors in the southern Philippines, and assessed potential links between vector indices and climate factors. METHODS: We analysed routinely collected larval and pupal surveillance data from residential areas of 14 cities and 51 municipalities during 2013-2018 (House, Container, Breteau and Pupal Indices), and used linear regression to explore potential relationships between vector indices and climate variables (minimum temperature, maximum temperature and precipitation). RESULTS: We found substantial spatial and temporal variation in monthly Aedes vector indices between cities during the study period, and no seasonal trend apparent. The House (HI), Container (CI) and Breteau (BI) Indices remained at comparable levels across most surveys (mean HI = 15, mean CI = 16, mean BI = 24), while the Pupal Productivity Index (PPI) was relatively lower in most months (usually below 5) except for two main peak periods (mean = 49 overall). A small proportion of locations recorded high values across all entomological indices in multiple surveys. Each of the vector indices were significantly correlated with one or more climate variables when matched to data from the same month or the previous 1 or 2 months, although the effect sizes were small. Significant associations were identified between minimum temperature and HI, CI and BI in the same month (R2 = 0.038, p = 0.007; R2 = 0.029, p = 0.018; and R2 = 0.034, p = 0.011, respectively), maximum temperature and PPI with a 2-month lag (R2 = 0.031, p = 0.032), and precipitation and HI in the same month (R2 = 0.023, p = 0.04). CONCLUSIONS: Our findings indicated that larval and pupal surveillance indices were highly variable, were regularly above the threshold for triggering vector control responses, and that vector indices based on household surveys were weakly yet significantly correlated with city-level climate variables. We suggest that more detailed spatial and temporal analyses of entomological, climate, socio-environmental and Aedes-borne disease incidence data are necessary to ascertain the most effective use of entomological indices in guiding vector control responses, and reduction of human disease risk.


Subject(s)
Aedes , Dengue , Aedes/physiology , Animals , Humans , Larva , Mosquito Control , Mosquito Vectors/physiology , Philippines/epidemiology
10.
Curr Biol ; 32(14): 3161-3169.e7, 2022 07 25.
Article in English | MEDLINE | ID: mdl-35700732

ABSTRACT

Mutations with conflicting fitness effects in males and females accumulate in sexual populations, reducing their adaptive capacity.1,2 Although quantitative genetic studies indicate that sexually antagonistic polymorphisms are common,3-5 their molecular basis and population genetic properties remain poorly understood.6,7 Here, we show in fruit flies how natural variation at a single gene generates sexual antagonism through phenotypic effects on cuticular hydrocarbon (CHC) traits that function as both mate signals and protectors against abiotic stress8 across a latitudinal gradient. Tropical populations of Drosophila serrata have polymorphic CHCs producing sexual antagonism through opposing but sex-limited effects on these two fitness-related functions. We dissected this polymorphism to a single fatty-acyl CoA reductase gene, DsFAR2-B, that is expressed in oenocyte cells where CHCs are synthesized. RNAi-mediated disruption of the DsFAR2-B ortholog in D. melanogaster oenocytes affected CHCs in a similar way to that seen in D. serrata. Population genomic analysis revealed that balancing selection likely operates at the DsFAR2-B locus in the wild. Our study provides insights into the genetic basis of sexual antagonism in nature and connects sexually varying antagonistic selection on phenotypes with balancing selection on genotypes that maintains molecular variation.


Subject(s)
Drosophila melanogaster , Drosophila , Animals , Drosophila/genetics , Drosophila melanogaster/genetics , Female , Genetic Variation , Hydrocarbons , Male , Phenotype , Reproduction/genetics , Selection, Genetic , Sex Characteristics
11.
Viruses ; 14(4)2022 03 28.
Article in English | MEDLINE | ID: mdl-35458433

ABSTRACT

Dengue is an arboviral disease caused by dengue virus (DENV), leading to approximately 25,000 deaths/year and with over 40% of the world's population at risk. Increased international travel and trade, poorly regulated urban expansion, and warming global temperatures have expanded the geographic range and incidence of the virus in recent decades. This study used phylogenetic and selection pressure analyses to investigate trends in DENV evolution, using whole genome coding sequences from publicly available databases alongside newly sequenced isolates collected between 1963-1997 from Southeast Asia and the Pacific. Results revealed very similar phylogenetic relationships when using the envelope gene and the whole genome coding sequences. Although DENV evolution is predominantly driven by negative selection, a number of amino acid sites undergoing positive selection were found across the genome, with the majority located in the envelope and NS5 genes. Some genotypes appear to be diversifying faster than others within each serotype. The results from this research improve our understanding of DENV evolution, with implications for disease control efforts such as Wolbachia-based biocontrol and vaccine design.


Subject(s)
Dengue Virus , Dengue , Wolbachia , Evolution, Molecular , Genome, Viral , Genotype , Humans , Phylogeny
12.
Theranostics ; 12(6): 2811-2832, 2022.
Article in English | MEDLINE | ID: mdl-35401827

ABSTRACT

Rational: The mutating SARS-CoV-2 potentially impairs the efficacy of current vaccines or antibody-based treatments. Broad-spectrum and rapid anti-virus methods feasible for regular epidemic prevention against COVID-19 or alike are urgently called for. Methods: Using SARS-CoV-2 virus and bioengineered pseudoviruses carrying ACE2-binding spike protein domains, we examined the efficacy of cold atmospheric plasma (CAP) on virus entry prevention. Results: We found that CAP could effectively inhibit the entry of virus into cells. Direct CAP or CAP-activated medium (PAM) triggered rapid internalization and nuclear translocation of the virus receptor, ACE2, which began to return after 5 hours and was fully recovered by 12 hours. This was seen in vitro with both VERO-E6 cells and human mammary epithelial MCF10A cells, and in vivo. Hydroxyl radical (·OH) and species derived from its interactions with other species were found to be the most effective CAP components for triggering ACE2 nucleus translocation. The ERα/STAT3(Tyr705) and EGFR(Tyr1068/1086)/STAT3(Tyr705) axes were found to interact and collectively mediate the effects on ACE2 localization and expression. Conclusions: Our data support the use of PAM in helping control SARS-CoV-2 if developed into products for nose/mouth spray; an approach extendable to other viruses utilizing ACE2 for host entry.


Subject(s)
COVID-19 , Plasma Gases , Angiotensin-Converting Enzyme 2 , COVID-19/prevention & control , Humans , Plasma Gases/pharmacology , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism
13.
PLoS Negl Trop Dis ; 15(11): e0009963, 2021 11.
Article in English | MEDLINE | ID: mdl-34784371

ABSTRACT

BACKGROUND: Australia is theoretically at risk of epidemic chikungunya virus (CHIKV) activity as the principal vectors are present on the mainland Aedes aegypti) and some islands of the Torres Strait (Ae. aegypti and Ae. albopictus). Both vectors are highly invasive and adapted to urban environments with a capacity to expand their distributions into south-east Queensland and other states in Australia. We sought to estimate the epidemic potential of CHIKV, which is not currently endemic in Australia, by considering exclusively transmission by the established vector in Australia, Ae. aegypti, due to the historical relevance and anthropophilic nature of the vector. METHODOLOGY/PRINCIPAL FINDINGS: We estimated the historical (1995-2019) epidemic potential of CHIKV in eleven Australian locations, including the Torres Strait, using a basic reproduction number equation. We found that the main urban centres of Northern Australia could sustain an epidemic of CHIKV. We then estimated future trends in epidemic potential for the main centres for the years 2020 to 2029. We also conducted uncertainty and sensitivity analyses on the variables comprising the basic reproduction number and found high sensitivity to mosquito population size, human population size, impact of vector control and human infectious period. CONCLUSIONS/SIGNIFICANCE: By estimating the epidemic potential for CHIKV transmission on mainland Australia and the Torres Strait, we identified key areas of focus for controlling vector populations and reducing human exposure. As the epidemic potential of the virus is estimated to rise towards 2029, a greater focus on control and prevention measures should be implemented in at-risk locations.


Subject(s)
Chikungunya Fever/epidemiology , Chikungunya virus/physiology , Aedes/physiology , Aedes/virology , Animals , Australia/epidemiology , Bayes Theorem , Chikungunya Fever/transmission , Chikungunya Fever/virology , Chikungunya virus/genetics , Epidemics , Female , Humans , Male , Mosquito Vectors/physiology , Mosquito Vectors/virology
14.
Molecules ; 26(16)2021 Aug 13.
Article in English | MEDLINE | ID: mdl-34443506

ABSTRACT

Macrophages play a prominent role in wound healing. In the early stages, they promote inflammation and remove pathogens, wound debris, and cells that have apoptosed. Later in the repair process, they dampen inflammation and secrete factors that regulate the proliferation, differentiation, and migration of keratinocytes, fibroblasts, and endothelial cells, leading to neovascularisation and wound closure. The macrophages that coordinate this repair process are complex: they originate from different sources and have distinct phenotypes with diverse functions that act at various times in the repair process. Macrophages in individuals with diabetes are altered, displaying hyperresponsiveness to inflammatory stimulants and increased secretion of pro-inflammatory cytokines. They also have a reduced ability to phagocytose pathogens and efferocytose cells that have undergone apoptosis. This leads to a reduced capacity to remove pathogens and, as efferocytosis is a trigger for their phenotypic switch, it reduces the number of M2 reparative macrophages in the wound. This can lead to diabetic foot ulcers (DFUs) forming and contributes to their increased risk of not healing and becoming infected, and potentially, amputation. Understanding macrophage dysregulation in DFUs and how these cells might be altered, along with the associated inflammation, will ultimately allow for better therapies that might complement current treatment and increase DFU's healing rates.


Subject(s)
Diabetes Mellitus/pathology , Macrophages/pathology , Skin/pathology , Wound Healing , Animals , Humans , Inflammation/pathology , Models, Biological
15.
Environ Res ; 196: 110900, 2021 05.
Article in English | MEDLINE | ID: mdl-33636184

ABSTRACT

BACKGROUND: Previous studies have shown associations between local weather factors and dengue incidence in tropical and subtropical regions. However, spatial variability in those associations remains unclear and evidence is scarce regarding the effects of weather extremes. OBJECTIVES: We examined spatial variability in the effects of various weather conditions on the unprecedented dengue outbreak in Guangdong province of China in 2014 and explored how city characteristics modify weather-related risk. METHODS: A Bayesian spatial conditional autoregressive model was used to examine the overall and city-specific associations of dengue incidence with weather conditions including (1) average temperature, temperature variation, and average rainfall; and (2) weather extremes including numbers of days of extremely high temperature and high rainfall (both used 95th percentile as the cut-off). This model was run for cumulative dengue cases during five months from July to November (accounting for 99.8% of all dengue cases). A further analysis based on spatial variability was used to validate the modification effects by economic, demographic and environmental factors. RESULTS: We found a positive association of dengue incidence with average temperature in seven cities (relative risk (RR) range: 1.032 to 1.153), a positive association with average rainfall in seven cities (RR range: 1.237 to 1.974), and a negative association with temperature variation in four cities (RR range: 0.315 to 0.593). There was an overall positive association of dengue incidence with extremely high temperature (RR:1.054, 95% credible interval (CI): 1.016 to 1.094), without evidence of variation across cities, and an overall positive association of dengue with extremely high rainfall (RR:1.505, 95% CI: 1.096 to 2.080), with seven regions having stronger associations (RR range: 1.237 to 1.418). Greater effects of weather conditions appeared to occur in cities with higher economic level, lower green space coverage and lower elevation. CONCLUSIONS: Spatially varied effects of weather conditions on dengue outbreaks necessitate area-specific dengue prevention and control measures. Extremes of temperature and rainfall have strong and positive associations with dengue outbreaks.


Subject(s)
Dengue , Extreme Weather , Bayes Theorem , China/epidemiology , Cities/epidemiology , Dengue/epidemiology , Disease Outbreaks , Humans , Incidence , Weather
16.
Int J Biometeorol ; 65(7): 1033-1042, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33598765

ABSTRACT

Dengue transmission is climate-sensitive and permissive conditions regularly cause large outbreaks in Asia-Pacific area. As climate change progresses, extreme weather events such as heatwaves and unusually high rainfall are predicted more intense and frequent, but their impacts on dengue outbreaks remain unclear so far. This paper aimed to investigate the relationship between extreme weather events (i.e., heatwaves, extremely high rainfall and extremely high humidity) and dengue outbreaks in China. We obtained daily number of locally acquired dengue cases and weather factors for Guangzhou, China, for the period 2006-2015. The definition of dengue outbreaks was based on daily number of locally acquired cases above the threshold (i.e., mean + 2SD of daily distribution of dengue cases during peaking period). Heatwave was defined as ≥2 days with temperature ≥ 95th percentile, and extreme rainfall and humidity defined as daily values ≥95th percentile during 2006-2015. A generalized additive model was used to examine the associations between extreme weather events and dengue outbreaks. Results showed that all three extreme weather events were associated with increased risk of dengue outbreaks, with a risk increase of 115-251% around 6 weeks after heatwaves, 173-258% around 6-13 weeks after extremely high rainfall, and 572-587% around 6-13 weeks after extremely high humidity. Each extreme weather event also had good capacity in predicting dengue outbreaks, with the model's sensitivity, specificity, accuracy, and area under the receiver operating characteristics curve all exceeding 86%. This study found that heatwaves, extremely high rainfall, and extremely high humidity could act as potential drivers of dengue outbreaks.


Subject(s)
Dengue , Extreme Weather , Asia , China/epidemiology , Dengue/epidemiology , Disease Outbreaks , Humans , Nonlinear Dynamics , Weather
17.
Environ Res ; 195: 110849, 2021 04.
Article in English | MEDLINE | ID: mdl-33561446

ABSTRACT

BACKGROUND: The mosquitoes Aedes aegypti and Ae. albopictus are the primary vectors of dengue virus, and their geographic distributions are predicted to expand further with economic development, and in response to climate change. We aimed to estimate the impact of future climate change on dengue transmission through the development of a Suitable Conditions Index (SCI), based on climatic variables known to support vectorial capacity. We calculated the SCI based on various climate change scenarios for six countries in the Asia-Pacific region (Australia, China, Indonesia, The Philippines, Thailand and Vietnam). METHODS: Monthly raster climate data (temperature and precipitation) were collected for the period January 2005 to December 2018 along with projected climate estimates for the years 2030, 2050 and 2070 using Representative Concentration Pathway (RCP) 4·5, 6·0 and 8·5 emissions scenarios. We defined suitable temperature ranges for dengue transmission of between 17·05-34·61 °C for Ae. aegypti and 15·84-31·51 °C for Ae. albopictus and then developed a historical and predicted SCI based on weather variability to measure the expected geographic limits of dengue vectorial capacity. Historical and projected SCI values were compared through difference maps for the six countries. FINDINGS: Comparing different emission scenarios across all countries, we found that most South East Asian countries showed either a stable pattern of high suitability, or a potential decline in suitability for both vectors from 2030 to 2070, with a declining pattern particularly evident for Ae. albopictus. Temperate areas of both China and Australia showed a less stable pattern, with both moderate increases and decreases in suitability for each vector in different regions between 2030 and 2070. INTERPRETATION: The SCI will be a useful index for forecasting potential dengue risk distributions in response to climate change, and independently of the effects of human activity. When considered alongside additional correlates of infection such as human population density and socioeconomic development indicators, the SCI could be used to develop an early warning system for dengue transmission.


Subject(s)
Aedes , Dengue , Animals , Australia , China , Climate Change , Dengue/epidemiology , Humans , Indonesia/epidemiology , Mosquito Vectors , Thailand , Vietnam
18.
Open Biol ; 11(1): 200246, 2021 01.
Article in English | MEDLINE | ID: mdl-33401993

ABSTRACT

The principal vector of dengue, Zika and chikungunya viruses is the mosquito Aedes aegypti, with its ability to transmit pathogens influenced by ambient temperature. We use chikungunya virus (CHIKV) to understand how the mosquito transcriptome responds to arbovirus infection at different ambient temperatures. We exposed CHIKV-infected mosquitoes to 18, 28 and 32°C, and found that higher temperature correlated with higher virus levels, particularly at 3 days post infection, but lower temperature resulted in reduced virus levels. RNAseq analysis indicated significantly altered gene expression levels in CHIKV infection. The highest number of significantly differentially expressed genes was observed at 28°C, with a more muted effect at the other temperatures. At the higher temperature, the expression of many classical immune genes, including Dicer-2, was not substantially altered in response to CHIKV. The upregulation of Toll, IMD and JAK-STAT pathways was only observed at 28°C. Functional annotations suggested that genes in immune response and metabolic pathways related to energy supply and DNA replication were involved in temperature-dependent changes. Time post infection also led to substantially different gene expression profiles, and this varied with temperature. In conclusion, temperature significantly modulates mosquito gene expression in response to infection, potentially leading to impairment of immune defences at higher temperatures.


Subject(s)
Aedes/metabolism , Chikungunya virus/physiology , Immunity/genetics , Mosquito Vectors/immunology , Aedes/virology , Animals , Down-Regulation , Gene Ontology , Mosquito Vectors/virology , RNA, Long Noncoding/metabolism , Signal Transduction/genetics , Temperature , Up-Regulation
19.
Viruses ; 12(10)2020 10 07.
Article in English | MEDLINE | ID: mdl-33036370

ABSTRACT

Dengue, chikungunya and Zika viruses share similar disease features, rendering them difficult to distinguish clinically. Incapacitating arthralgia/arthritis is a specific manifestation associated with chikungunya virus infection. However, the profile of arthralgia/arthritis in Zika virus (ZIKV) cases has not been well characterized. Articles were extracted from PubMed and Scopus databases reporting original data from patients with arthralgia/arthritis, according to the Cochrane Collaboration. Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, 137 articles reporting ZIKV-associated joint symptoms were reviewed. Arthralgia was more frequently reported (n = 124 from case studies, n = 1779 from population-based studies) than arthritis (n = 7 and n = 121, respectively). Arthralgia was resolved in <1 week in 54%, and within 1-2 weeks in 40% of cases. The meta-analysis of cases in population-based studies identified a pooled prevalence of 53.55% for arthralgia. The pooled prevalence of arthralgia/arthritis during outbreaks depended on the geographic location, with a higher joint symptom burden observed in the Americas compared to South East Asia (Brazil: 60.79%; Puerto Rico: 68.89% and South East Asia: 26.46%). We conclude that non-specific constitutional arthralgia is the most common joint manifestation during ZIKV infection, being present in nearly half of cases but resolving by two weeks in >90% of these. We found no evidence of chronic rheumatic manifestations following ZIKV infection.


Subject(s)
Arthralgia/epidemiology , Arthritis/epidemiology , Zika Virus Infection/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Arthralgia/virology , Arthritis/virology , Brazil/epidemiology , Disease Outbreaks , Female , Humans , Joints/pathology , Male , Middle Aged , Prevalence , Young Adult , Zika Virus , Zika Virus Infection/pathology
20.
BMC Infect Dis ; 20(1): 722, 2020 Oct 02.
Article in English | MEDLINE | ID: mdl-33008314

ABSTRACT

BACKGROUND: Ross River virus (RRV) is responsible for the most common vector-borne disease of humans reported in Australia. The virus circulates in enzootic cycles between multiple species of mosquitoes, wildlife reservoir hosts and humans. Public health concern about RRV is increasing due to rising incidence rates in Australian urban centres, along with increased circulation in Pacific Island countries. Australia experienced its largest recorded outbreak of 9544 cases in 2015, with the majority reported from south east Queensland (SEQ). This study examined potential links between disease patterns and transmission pathways of RRV. METHODS: The spatial and temporal distribution of notified RRV cases, and associated epidemiological features in SEQ, were analysed for the period 2001-2016. This included fine-scale analysis of disease patterns across the suburbs of the capital city of Brisbane, and those of 8 adjacent Local Government Areas, and host spot analyses to identify locations with significantly high incidence. RESULTS: The mean annual incidence rate for the region was 41/100,000 with a consistent seasonal peak in cases between February and May. The highest RRV incidence was in adults aged from 30 to 64 years (mean incidence rate: 59/100,000), and females had higher incidence rates than males (mean incidence rates: 44/100,000 and 34/100,000, respectively). Spatial patterns of disease were heterogeneous between years, and there was a wide distribution of disease across both urban and rural areas of SEQ. Overall, the highest incidence rates were reported from predominantly rural suburbs to the north of Brisbane City, with significant hot spots located in peri-urban suburbs where residential, agricultural and conserved natural land use types intersect. CONCLUSIONS: Although RRV is endemic across all of SEQ, transmission is most concentrated in areas where urban and peri-urban environments intersect. The drivers of RRV transmission across rural-urban landscapes should be prioritised for further investigation, including identification of specific vectors and hosts that mediate human spillover.


Subject(s)
Alphavirus Infections/epidemiology , Ross River virus , Adult , Alphavirus Infections/transmission , Female , Humans , Incidence , Male , Middle Aged , Queensland/epidemiology , Rural Health , Urban Health
SELECTION OF CITATIONS
SEARCH DETAIL
...